Ohio's Wind Future

- Ohio has incredible wind potential: 66,000
- A landmark energy policy
- A project review process that provides for predictability and accountability
- The nation's top wind supply chain and manufacturing base
- Interest from the nation's top wind developers

Wind Development in ie Planner's Role

Sponsored by

Cleveland OPC 20th Annual Planning and Zoning Workshop

Presented by

James Damon

Coordinator Ohio Wind Working Group,

December 5, 2008

Audio for the presentation is available as a separate MP3 file. When listening to the presentation, advance to the next slide at

W

Global Installed Wind Capacity

1. Germany: 21800 MW

2.United States: 16740 MW

. Spain: 13915 MW

. India: 7720 MW

5. China: 5000 MW

Capacity (MW)

2007-27% growth \$37B investmen

■ United States

Europe

☐ Rest of World

alled Wind Capacities -

- Senate Bill 221
- Signed into law on 1 May 2008
- By 2025, requires of all electrom Advanced Energy Sources of all electricity sold to be
- At least must c Wind, Solar, Biomass must come from Renewable Sources:
- At least must be generated in Ohio
- Gradual Ramp-up begins in 2009 with annual benchmarks
- 3rd most aggressive RPS with regards to wind 6,000 - 7,000 MW of wind by 2025

Ohio's Allowing and Wind

- > 2009: 82 megawatts
- > 2012: 557 megawatts
- > 2015: 1,320 megawatts
- > 2020: 3,099 megawatts
- > 2025: 4,240 megawatts
- Ohio currently has 7.2 megawatts installed

- Until June, siting of facilities below 50 megawatts was left to local zoning
- HB 562 directs the OPSB to adopt wind facilities capable of generating between 5 and 50 megawatts of electricity. operation and maintenance of wind-powered electric generation facilities. The new law extended OPSB siting authority to include certification rules for the construction,

Oho Power Strag Board

- Process for project review and certification is identical to other generation sources
- Rules adopted on October 28, 2008
- Two-part minimum setback
- 1. Equal to 1.1 times the total height of the turbine from the wind farm property
- 2. 750 feet from the nearest habitable structure

- Turbine height v. tower/hub height: the blade at its highest vertical axis height of the turbine including the length of Turbine height is defined as the total
- > Typically, less than one acre is removed of development for farming and grazing for every 50 acres
- > 1 MW of wind energy is enough to power 300 homes in Ohio

- Turbines must be spaced a minimum distance to avoid shadowing each other and reducing power output
- A typical utility scale turbine (400 ft) will require a minimum land footprint of 15 acres
- > Leasing the rights to a developer can more than double the annual income for grazing and cultivation

- A 1 kW turbine can be purchased for \$5,000
- > A 10 kW turbine will meet the needs of an average home in Ohio at the installation cost of \$50,000-\$70,000
- > A 10 kW turbine ranges from 60' to 120'
- > What does this mean for wide scale development? It is unlikely

- Who is likely to construct a small wind turbine? manufacturing/industrial facilities, homeowners Schools, churches, municipal buildings,
- An ideal site for small wind depends on topography and the location of other, taller structures, including trees
- A residential turbine makes about as much noise as a washing machine
- Residential turbines generally not suitable for small lot, suburban homes

- Utility sized turbines are not noisy and when setback a distance of 750 ft are no louder than a retrigerator
- Shadow flicker is rarely a problem with newer wind farms and can be avoided from visual modeling done during the assessment phase
- Flicker does not induce seizures due to the slow speed at which the blades rotate
- Aesthetic issues; beauty is in the eye of the beholder!

OPSI FLOSION

- Applicant must describe reliability of equipment and provide turbine manufacturers safety requirements
- Applicant must evaluate potential of ice throw and blade sheer
- Applicant must describe potential shadow impact on adjacent residential structures and primary roads

- Application requirements are more comprehensive than most zoning
- Application submissions must include:
- 1:24,000 scale map showing all geographical, topographical and sociological features
- lines and substations. 1:12,000 scale project layout map including access roads, turbine locations, transmission

- Environmental issues: applicant must waste, and habitat in the area provide information on air, water, solid
- Applicant even needs to provide population projections for 10 years within 5 miles of proposed project site

ne Panner's Role: Small Wind

- Draft zoning that balances the rights of participating and non-participating
- Establish setbacks that are based on the turbines height of the turbine: don't zone out wind landowners
- Do not reinvent the wheel—examine zoning language you already have that may be applicable to wind

he Planner's Role: Small Wind

- Setbacks: A nexus should exist between the turbine height is only 50 ft. setback. A 1,000 ft setback is arbitrary if the height of the turbine and the established
- FAA permitting: any structure over 200 ft in height or within 10,000 ft from a runway must obtain FAA approval
- Wind monitoring is generally not needed
- Small turbines pose little threat to habitat or migratory patterns of birds and bats

TO PARTY WING

- Wind turbines are only similar to communication towers in height
- Utility sized turbines face siting considerations that residential turbines do not
- Consider met towers as part of your zoning language
- Zoning will still need be drafted for utility sized turbines that produce less than 5 MW. Ex: churches, schools, industrial facilities

- powerless Pre-emption does not leave the planner
- OPSB invites comments at several stages during the project review process
- Inform your constituents or residents of public, OPSB meetings for projects being developed in your townships/counties

ne Planner's Role: Small Wind

- Setbacks: A nexus should exist between the turbine height is only 50 ft. setback. A 1,000 ft setback is arbitrary if the height of the turbine and the established
- FAA permitting: any structure over 200 ft in obtain FAA approval height or within 10,000 ft from a runway must
- Wind monitoring is generally not needed
- Small turbines pose little threat to habitat or migratory patterns of birds and bats

- Wind turbines are only similar to communication towers in height
- Utility sized turbines face siting considerations that residential turbines do not
- Consider met towers as part of your zoning language
- Zoning will still need be drafted for utility sized turbines that produce less than 5 MW. Ex: churches, schools, industrial facilities

Tecommendations

If you are unsure about the legality of contact your county prosecutor or including something in zoning language, commissioner

Resources for Panners

- > The Ohio Wind Working Group: www.ohiowind.org
- The American Wind Energy Association: www.awea.org
- > The Ohio Power Siting Board: www.opsb.ohio.gov
- James.Damon@development.ohio.gov

> Me:

Ohio Wind Working Group www.ohiowind.org

- Wind energy collaborative
- Over 100 organizations and individuals involved
- Address priority wind issues:
- Siting
- Environmental
- Outreach
- Quarterly meetings open to the public